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Abstract--We propose a one-dimensional theory of fluidized suspensions in which the fluids and solids 
momentum equations are decoupled by using a new mean drag law for the particles. Our mean drag law 
differs from the standard drag laws frequently used in that the drag is assumed to depend on the area 
fraction rather than the number density. For a monodisperse suspension of spheres of radius R, the area 
fraction and the number density are related by a simple geometrical construction that takes into account 
the area of intersection of the spheres with a plane perpendicular to the flow. For the linearized theory 
uniformly fluidized suspension is unstable but not Hadamard unstable. However, there is a distinguished 
set of marginally stable modes belonging to a countable set of blocked wave numbers ~: ~ = 4.493/R, 
7.7253/R, 10.904/R . . . .  The nonlinear theory contains bounded solutions when a certain dimensionless 
"growth rate" parameter is below a critical value. The power spectrum of these bounded solutions is broad 
banded in both space and time, and is very low for the wave numbers that are marginally stable in the 
linear theory. These results agree with our experiments, as well as with the previous experimental results 
from diffraction studies. 

Key Words: fluidized suspensions, radial and area-averaged distributions, particle phase theories, 
Hodamard instability, bubbling instability, bounded solutions 

I .  I N T R O D U C T I O N  

W e  b e g i n  w i t h  a b r i e f  d e s c r i p t i o n  o f  t he  n a t u r e  o f  v o i d a g e  f l u c t u a t i o n s  in  f lu id i zed  s u s p e n s i o n s  as  

o b s e r v e d  b y  v a r i o u s  a u t h o r s .  W e  f i rs t  d i s cus s  t he  e x p e r i m e n t s  d o n e  in  t w o - d i m e n s i o n a l  b e d s  a n d  

t h e n  s i m i l a r  e x p e r i m e n t s  d o n e  in  t h r e e - d i m e n s i o n a l  beds .  P h o t o g r a p h s  o f  t h e  m o t i o n  o f  so l id  

s p h e r i c a l  p a r t i c l e s  f lu id i zed  b y  w a t e r  in  o u r  t w o - d i m e n s i o n a l  b e d  (see f igure  1) a r e  s h o w n  in  f igure  2. 

k.) 
O 0  0 0 0 0 0 

0 0 O 0  0 0 
0 

0 0 0 0 
0 0 0 

0 
)0 O0 0 0 0 0 

0 0 0 0 
o o ° ° 

O 0  0 0 0 
0 0 0 

0 0 0 0 
O 0 0 0 n 

t t t t t 

0 

0 

D 

O 

t 

183 cm 

[ O 0 0 O] _..~.7264cm 

l_ 28 cm _l 
I-  -I  

Figure 1. Schematic diagram of the two-dimensional bed used to carry out experiments. Particle diameters are listed in table 
1. The bed is actually three-dimensional but the particles are constrained to move in two dimensions. 
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Figure 2. Re = 300. The spatial distribution of particles is nonuniform. 

Beds of particles confined to move in two dimensions have been studied before by Volpicelli et  al. 

(1966); Garside & A1-Dibouni (1973); Joseph et  al. (1987); Fortes et  al. (1987); and Singh et  al. 

(1989). We refer to these as VMZ, GA, JFLS, FJL and SCFJL. More photographs of fluidization 
in two-dimensional beds can be found in these papers and Singh (1991). VMZ showed that when 
the particles are in a fluidized state, i.e. void fraction c > 0.45, the fluidized bed correlations of  
Richardson & Zaki (1954) are also satisfied in a two-dimensional bed. In particular, they obtained 
a correlation relating the composite or superficial velocity Uc to the void fraction, ~, uc = V~ n, where 
n depends on Reynolds number as in the Richardson & Zaki correlation and V is the free fall 
velocity of  a single particle. This and other observations of  VMZ are in good agreement with our 
observations (see Singh 1991). Furthermore,  when the fluidizing velocity is only slightly greater 
than the minimum needed for fluidization, many spheres are aggregated and the beds exhibits 
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voidage cracks which propagate by particles dropping out of the roof (see JFLS, FJL). At higher 
fluidizing velocities, on the other hand, the bed spreads much more uniformly and the neighboring 
particles move independently on paths that are quasi-random. In this regime, the fluctuations of 
the particle velocities and the number density are also quasi-random. 

Even though the particle trajectories in three-dimensional beds appear to be qualitatively similar, 
the above quantitative visual observations can be made relatively easily only for two-dimensional 
beds. For three-dimensional beds, however, it is easier to use the diffraction techniques to obtain 
the spatial arrangement of the particles directly in terms of the power spectrums (also called the 
structure factors), i.e. the square magnitude of the Fourier transform of the number density. For 
example, Pusey (1978) used dynamic light scattering to measure the structure factor for a 
monodisperse suspension of spherical particles of 0.09 ~tm dia. This particular value of the particle 
diameter was used because the light scattering technique can be used only to probe wavelengths 
that are comparable to the wave length of the visible spectrum. Wai e t  al. (1987); Wignall et  al. 

(1990) and Ottewill (1991), on the other hand, have used neutron scattering to obtain the structure 
factor for 0. l gm uniform spheres, i.e. spheres that have the scattering density uniformly distributed 
within the particles; as well as for 0. ! g m  spheres that have a neutron transparent shell and a neutron 
scattering core. A comparison of these experimental results with our results reported in section 5 
suggests that the spatial power spectrum, and hence also the spatial arrangement of the particles for 
two- and three-dimensional beds, including the effects associated with wave number blockage, are 
similar [see section 3; Singh (1991), and Singh & Joseph (1990, 1991)]. 

In section 3 we consider a one-dimensional theory of fluidized suspensions in which the fluids 
and solids equations are decoupled, and the system is closed with a momentum equation for the 
particles alone. The simplest theory based on the mean drag acting on a typical particle of the 
fluidized suspension is used (see Jackson 1963) except that the force that the fluid exerts on the 
particles is assumed to depend on the local area fraction rather than the local number density (or 
equivalently the local volume fraction, when the local volume fraction is defined to be the product 
of the local number density and the volume of  one particle). In a monodisperse suspension of 
spheres of  radius R, the area fraction and the number density are related by a simple geometrical 
construction that takes into account the area of intersection of the spheres with a plane 
perpendicular to the flow, even when their centers are not exactly on the plane (see section 3 for 
details). Our one-dimensional theory then has three unknowns, the number density, the area 
fraction and the particle velocity, rather than two. The term based on the gradient of the volume 
fraction which expresses the particle phase pressure is not included in the present analysis. The 
two-variable theory is recovered in the limit R-~0 or when the wavelength of the disturbance 
studied is much larger than R. The three-variable theory, however, is fundamentally different from 
the two-variable theory because for the linearized three-variable theory the uniform fluidized-sus- 
pension is not Hadamard unstable. The uniformly fluidized state is linearly unstable even in the 
three-variable theory, but there is a distinguished set of marginally stable modes belonging to a 
countable set of  blocked wave numbers generated by the relation between the number density and 
the area fraction (see section 3). 

The initial value problems for the nonlinear three-variable theory are solved numerically in a 
periodic domain (see section 4 for details). The solutions are bounded when a certain dimensionless 
"growth rate" parameter is below a critical value. These bounded solutions are found to be 
independent of  the initial conditions. However, when the "growth rate" parameter is larger than the 
critical value then the numerical solutions are unstable in the sense that the power contained in 
the fluctuations grows with time, without bound. For a bounded solution, when it exists, both the 
temporal and the spatial power spectrums are broad banded, but the power level is very low for the 
wave numbers in the blocked set which, as we have already noted, are marginally stable in the linear 
theory. These results are in good agreement with the experimental results reported in section 5, and 
also with the results obtained by Wai, Wignall et  al. and Ottewill for the number density distributions. 

In section 5 we will report our results for the spatial distribution of the area fraction as a function 
of time that are obtained by analyzing the digitized video recordings of two-dimensional fluidized 
beds. This data is then used to obtain the temporal autocorrelation and spectrum at a point, the 
spatial autocorrelation and spectrum at a fixed time, as well as the two-dimensional spectrum in 
space and time. The temporal autocorrelation decays monotonically to zero at all Reynolds 
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numbers. The spatial autocorrelation, on the other hand, becomes negative and then goes to zero 
for large spatial shifts. The Fourier transform of the spatial autocorrelation function (i.e. the 
structure factor), as suggested by the geometric relation between the number density and the area 
fraction, contains deep minima at the blocked wave numbers (see section 3). We will show later 
that these minima in the Fourier transform of the spatial autocorrelation of the area fraction arise 
because the fluidized bed contains discrete spherical particles. The number density distribution can 
be obtained from the area fraction by inverting the convolution that relates the number density 
to the area fraction. However, since the zeros associated with the convolution function introduce 
error in the inversion of the convolution, an independent method is needed to verify the results 
of  deconvolution. This verification is accomplished by using the results of the neutron diffraction 
studies that give the spatial Fourier transform of the number density distribution of a fluidized 
suspension of particles directly when the diffraction radius of  the particles is different from their 
mechanical radius. These experiments conclusively prove that the minima of the number density 
and of the area fraction are at the same set of  blocked wave numbers (see Wai, Wignall et al. and 
Ottewill). Obviously, the minima of the number density distribution are created by a dynamical 
mechanism which at present is not fully understood. 

2. R A D I A L L Y  S Y M M E T R I C  D I S T R I B U T I O N S  

As indicated in the previous section, the results of  diffraction techniques, e.g. the light and 
neutron scattering techniques, also show that the set of  dimensionless minima of the spatial number 
density spectrum for a fluidized suspension is the same as the set of  zeros of the blockage function 
(see Wai, Wignall et al. and Ottewill). In their analysis, however, these latter authors have used 
the radially symmetric distributions, to descri.be their results, instead of the area averaged 
distributions we use in this paper. But, it is easy to show that the Fourier transform of a radially 
symmetric distribution, and that of an area averaged distribution obtained from a radially 
symmetric distribution, are the same. This proves that the two distributions are equivalent from 
a mathematical point of view, i.e. the same information is contained in both distributions. 

The radial distribution functions are used in statistical mechanics to describe the spatial distribution 
of atoms or molecules in liquids. Given a particle at the origin of the coordinate system, the radial 
distribution g (r, t), gives the probability of finding another particle at distance r from the origin. Since 
for isotropic systems, the radial distribution function is independent of the orientation, we have 

g(r, t) = ~(Irl, t). 

In the Fourier transform space this implies that 

g(~,  t) = g(L~l, t), 

where g(~, t) is the Fourier transform ofg( r ,  t). It is obvious that a radially symmetric distribution 
function can be described completely by its distribution along any one ray originating from the 
origin. So we need to know only, say g( zk ,  t) in the real space and g(~zk, t) in the Fourier 
transform space, where k is the unit vector along the z-direction and ~. is the component  of ~ along 
the z-direction. Next, we show that for any radially symmetric distribution there exists a unique 
area averaged distribution, independent of the direction of the plane used for averaging, the Fourier 
transform of which differs from the Fourier transform of the radial distribution function by a 
constant. We also show that the mapping between the area averaged distribution and the radially 
symmetric distribution function is invertible. 

We begin with a radially symmetric distribution g(r, t) = g(lr], t). Its Fourier transform is given 
by 

g(~, t) = g(l~t, t) - (2~)3 2 g(r, t)exp(i~.r)dr. 
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Since g(Ictl, t) depends only on Ict[, we may simplify the above expression by using ~t = ~_.k, 

g(l~l, t)-(21-)3/2 f: [f ,  f g(x,Y,Z, t)dx dy]exp(ic~_-z) dz 

- -  (2TC33/2 g,,(z, t )exp( i~..z ) dz 

where 

[2.1] 

g,(z , t )=f , . f , .g(x,y ,z , t )dxdy [2.2] 

is the area averaged distribution obtained by averaging the radially symmetric distribution g(Ir I, t) 
over the xy-plane. Since the left-hand side of [2.1] is independent of the orientation of the plane used 
for averaging, g,(z, t) is also independent of the orientation of the plane used for averaging. Further- 
more, the symmetry of  the radially symmetric distribution implies that g,(z, t) is an even function 
of z, and hence its Fourier transform is real. The last relation can be simplified further by noting 
that the expression on the right-hand side is the Fourier transform of g,(z, t) times 1/(2rt): i.e. 

g(lal, t) = ~ g,(c~, t ). [2.3] 

Therefore, the Fourier transform of the area averaged distribution g,(z, t), that is obtained from 
a radially symmetric distribution function using [2.2], is equal to 2n times the Fourier transform 
of  the radial distribution function. This result allows us to go from the Fourier transform of an 
area averaged distribution to the Fourier transform of the radial distribution, and thus from a 
one-dimensional area averaged distribution to the corresponding radial distribution. Hence, the 
mapping [2.2] between the radial distribution function g(Irl, t) and the area averaged one-dimen- 
sional function g,,(z, t) is invertible. Therefore, the one-dimensional area averaged distribution 
g:(z, t) is equivalent to the radially symmetric distribution function g(Jrl, t). Therefore, the results 
of diffraction studies are directly relevant to our one-dimensional theory, and a comparison 
between the results can be made in the Fourier transform space without transforming the data. 

3. T W O - V A R I A B L E  AND T H R E E - V A R I A B L E  T H E O R I E S  OF F L U I D I Z E D  
SUSPENSIONS 

We begin this section with a brief review of one-dimensional particle phase theories of 
three-dimensional fluidized suspensions. In these one-dimensional theories only the effects of 
variations of  fields averaged on the planes perpendicular to flow are modelled. The words "particle 
phase" mean that the momentum balance for the fluid and solid phases is decoupled, and thus it 
is possible a priori to model the effects of fluid on the particles. In this case we get a two-variable, 
one-dimensional theory of the type proposed by Jackson (1963), Anderson & Jackson (1967), 
Wallis (1969), Foscolo & Gibilaro (1984, 1987) and Batchelor (1988) for the number density N(z, t) 
and the particle velocity u(z, t). The number density satisfies the usual conservation law 

~N O(uN) 
+ - -  - 0  [3.1] 

3t 3z 

where z is in the direction of  the fluidizing velocity u,, and both N and u denote their respective 
values for the particles whose centers are at z, at time t. 

In order to close the system with a momentum equation for the particles, we need an estimate 
of  the average drag force acting on a typical particle of the fluidized suspension. Wallis, Foscolo 
and Oibilaro, and Batchelor have proposed essentially similar forms for the average drag. The main 
idea used in obtaining the functional form of the average drag is that the drag acting on a particle 
in a uniformly fluidized state exactly balances the buoyant weight of the particle. However, these 
drag laws neglect the fact that in a real fluidized suspension the spatial distribution of particles is 
nonuniform, and thus the particles are constantly subjected to quadi-random forces. Therefore, the 
drag law, at best, captures the time average of the actual time dependent quasi-random drag force. 
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In this paper we will use the following expression proposed by Foscolo & Gibilaro (1987) for 
the average drag force acting on a single particle 

[u, - u] 4~'' 
F ( u , q ~ ) = m ~ a { - ( 1 - ~ b ) + l ~ j  ( 1 - ~ b )  3.~}. [3.2] 

Here m is the mass of  a single sphere of  radius R, 

( p  - p , - )g  
g -  

o 

is the reduced gravity, p is the density o f  the sphere, Pr is the density o f  the fluid, U(q~) is the steady 
fall velocity under gravity of  a sphere in a uniform dispersion of  spheres o f  solids fraction ~b, 
@ = ~nR3N, u, = ur(l - q ~ ) - u q ~  is the fluidization velocity and u~-is the fluid velocity. In order to 
show that the above expression satisfies the Richardson-Zaki  correlation, we note that in a uniform 
suspension: F = 0, u = 0, and therefore 

u, = U(q')  = U(0)(l  - q>)" [3.3] 

where U(0) is the velocity of  one sphere in a pure liquid which can be expressed in terms of  the 
Reynolds number  using various empirical correlations, and n(Re) is the Richardson & Zaki 
exponent;  it lies between 4.8 for small Reynolds numbers  Re = u, 2R/v and 2.4 for large Re. 

We note that the above expression for the drag law assumes that the drag depends on the local 
solids fraction, defined as q> = 4nR3N. It also assumes that in a uniformly fluidized suspension the 
particles are uniformly distributed and have zero velocity. But, as we have noted earlier, in a real 
fluidized bed these two condit ions are never satisfied. Another  problem is that  once we have 
accepted the functional form of  the drag law, then it applies to all spatial distributions o f  the solids 
fraction, including the case where the solids fraction changes at scales comparable or  smaller than 
the diameter. 

The momen tum equation of  Foscolo & Gibilaro can be expressed as 

mN~/~  + U #z j NF + K~-oz [3.4] 

where K is a constant  that  depends on the parameters  of  the fluidized suspension. The gradient 
term propor t ional  to O@/Oz takes into account  the contr ibut ion of  the particle phase pressure. This 
type o f  system has also been developed by Batchelor and the gradient term interpreted there in 
terms of  diffusion against the gradient o f  concentrat ion that causes empty places to fill up as a result 
o f  small fluctuations in the particle velocity. This effect is analogous to the effect o f  Brownian 
mot ion in gases. In order to have diffusion against the gradient K must  be positive. 

Equat ions [3.1] and [3.4] are then a system of  one-dimensional equations in two variables q~ and 
u. Uniform fluidization with a constant  q~ = q~0 and u = 0 is a solution o f  [3.1] and [3.4], but it is 
H a d a m a r d  unstable when the gradient term in [3.4] is neglected (see section 4). The gradient term 
can regularize this instability and even introduce regions in the space o f  parameters where the 
uniform state is stable. 

Furthermore,  it is easy to show that in this case the criterion for the loss o f  stability is 
independent o f  the wave number  o f  the perturbation,  so if the system is unstable at all, it is unstable 
to long waves as well as to short waves [see Jones & Prosperetti (1985); Prosperetti & Jones (1987) 
and Prosperetti & Satrape (1989)]. 

In the remainder of  this section we develop a new theory in which the finite size of  the particles 
is accounted for in the drag law. The term based on the gradient o f  the volume fraction which 
expresses the particle phase pressure is not  included in the present theory. As we shall see, this 
introduct ion o f  the finite size makes it a three-variable theory. We call it a zeroth order theory 
because the gradient terms are not included. 

Central to our  three-variable theory is a little construct ion which relates the ensemble averaged 
number  density N, to the fractional area. Consider a plane at z = z~, perpendicular to gravity, as 
shown in figure 3. Let us consider a square o f  area A = L 2 in this plane with L >> R, so many spheres 
intersect the plane at z~. Let x be the distance from the plane zj. All spheres whose centers are 
at ]xl ~< R have a nonzero area o f  intersection with the plane z~. Also note that spheres with Ixl >t R 
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L 

Figure Cross-section of fluidized spheres of radius R in the plane z~. 

do  not  touch the plane z~. Recall that  N(z l  + x ,  t)  is the number  o f  spheres per unit volume 
with centers at z = z~ + x, and that the area o f  intersection o f  one o f  these spheres with the 
plane z I is n ( R  2 - x 2) (see figure 3). The differential number  o f  spheres contained in a rectangular 
box o f  height dx, centered at z = z~ + x, is N ( z  1 + x ,  t )A  dx.  Hence the total differential area 
o f  intersection o f  the spheres contained in this rectangular box with the plane z~ is 
n ( R  2 - x2)N(z~ + x ,  t ) A  dx .  Therefore, the area o f  plane z~ covered by the particles, As(Zl ,  t ) ,  is 
obtained by summing all o f  the areas o f  intersections coming from infinitesimal volumes centered 
on x +Zl  as x varies f rom - R  to R 

A~(zl ,  t)  = N ( x  + z l ,  t )rc(R 2 - x2)A dx .  [3.5] 
- R  

The fractional area o f  the plane Zl covered by the particles is, A~/A = 49,,. It is convenient to 
substitute 4~ = ~ R S N  in [3.5], then after dropping the subscript 1 we get 

• (x  + z, t ) ( R  2 - x 2) dx .  [3.6] 49.(z, t)  = N ( x  -[" Z I ,  t ) ~ ( R  2 -- x 2) d x  = ~ R  5 -R 
R 

From this equat ion we note that when q~ is independent o f  x 

49,(z, t) = cb(z, t) = 4~0 = 3nR3No [3.7] 

where No is the average number  density. Therefore, in this case the area fraction and the solids 
fraction are equal. This relation holds approximately also when R is small compared  to the distance 
over which N varies significantly. We remind the reader that this is the condit ion under which the 
drag law [3.2] is derived. 

The next step in the construct ion o f  the three-variable theory is to replace the solids fraction 4~ 
in the force law [3.2] with the area fraction qS,,, i.e. 

F(u,  49,,) = mg - ( 1  - (o,,) + L - ~ ) - J  (1 - 49,,) 38 . [3.8 1 

We could state this as a hypothesis that  the average value o f  the drag force acting on a particle 
depends on the blocked area normal  to the flow direction. Of  course, the actual functional form 
o f  the drag is expected to be far more complicated, but since at present it is not known we will 
proceed with the understanding that  our  drag law is only a crude approximat ion of  the actual drag 
law. However,  note that the modified drag law [3.8] reduces to [3.2] in a uniformly fluidized 
suspension, as can be seen by substituting [3.7] in [3.8]. The same is approximately correct when 
the wavelength o f  the disturbance perturbing the uniform state is much larger than the particle 
diameter (i.e. in the long wave limit, see section 4 for details). Therefore, since the original drag 
law [3.2] was derived for uniform fluidization and that the two laws are identical in this limit, we 
are only modifying its form in the regime where its true form is not known. However,  we wish to 
stress that our  objective in this paper is only to show that the dispersion relation for a drag law 
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based on the area fraction has some unique features that are also present in the power spectrums 
of  the real fluidized suspensions. The correct form of the drag law is not the central issue in this 
paper, and therefore we will only compare qualitatively the forms of the spatial and temporal power 
spectrums for the theory with that for the experimental data. 

The zeroth order three-variable theory for the area fraction based drag law is then given by 

(?m ,? (u4,) 
+ - 0, [3.91 

8t c?z 

• (x + z, t ) (R  ? - x 2) dx,  [3.10] 

~u ( ? u = g  _ ~ +  3~ [3.11] 

where E = 1 - ~b~,. Obviously uniform fluidization, u = 0, 4) = 4~, = 4~0, is a solution of this system 
of equations. 

At this point we want to state how the quantities defined in our three-variable model are to be 
obtained. We obtain N(z ,  t) and u(z, t) by ensemble averaging in the manner set down by Joseph 
& Lundgren (1990). It is necessary to think of ensemble averages rather than volume averages 
because we shall be looking at fields that vary over the length R of the microstructure. The 
fractional area qS,, is the convolution of the ensemble averaged number density. The main idea of 
our model is to replace the volume fraction 4) in the force law [3.2] by the area fraction 4~,,, where 
the two are related by the simple construction [3.6]. We have constructed our model as a hypothesis 
which seems reasonable, but at present cannot be proved. However, as we shall see, the results 
obtained from this theory are in good agreement with the experiment data presented in section 5, 
as well as with the data obtained from diffraction techniques by Wai, Wignall et al. and Ottewill. 

In the remainder of this section we obtain some mathematical properties of  relation [3.6]. For 
obtaining these properties we will assume that the number density is in the Fourier transform class 
because in this case it is easy to integrate the integral in [3.6]. By definition, when N is the Fourier 
transform class 

N(x ,  t) =- ~ N(e ,  t)exp(ic~x) dc~ [3.12] 

where N(cq t) is the Fourier transform of N(x ,  t). By substituting this form of the number density 
in [3.6], we get 

N(fl, t)exp(i[~(x + z))(R 2 -- x 2) d/~ dx. 
¢, ,(z ,  t )  = ~ R 

By taking the Fourier transform of the above equation, we have 

4),,(o~, t) -- O~(z, t ) e x p ( - i c ~ z ) d z  

-- / e x p ( - & z )  N(/L t)exp(i[t(x + z ) ) (R  2 - x 2) dx  dfl dz. 
R )" 

After changing the order of integration in the above, we get 

(o,,(o~, t) = ~ dz exp(if lz)N(fl ,  t) d/? exp(i/?(x + z))(R2 - x 2) dx 
f R 

- 2R3 O( f lR)  d/~ exp(i(/~ - 2 ) z ) N ( ~ ,  t) dz 
3 ~ z 

4rcR 3 
- O ( ~ R ) N ( 2 ,  t )  [3.13] 

3 
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where 

O ( ~ R ) = 3 F  sin~R c°s~R7 L~-R7 (~R)2 ] [3.14] 

is the blockage function. The graph of O (2eR) vs 2c~R is shown in figure 4. From [3.13] we conclude 
that when the number density is in the Fourier transform class then the dimensionless wave 
numbers, 2eR, for which O(c~R) is zero, are blocked (i.e. are missing) in the spectrum of  the area 
fraction. We will refer to these wave numbers as "blocked wave numbers." 

Although, the mathematical implications of relation [3.13] between the area fraction and the 
number density are obvious, the following ideas are helpful in developing a better intuitive 
understanding of the geometric constraints imposed on a monodisperse suspension of spherical 
particles. These ideas are developed in terms of a monochromatic periodic disturbance of wave 
number ~, i.e. 

N(t ,  z) = No + NI ( t )Re[exp(-  iez)] 

where No is the average number density, Nl is the amplitude of the disturbance, and Re[exp(-i~z)]  
is the real part of exp ( - i ez ) .  For N to be physically meaningful No >i Nl. After substituting the 
above expression for N in [3.6] and evaluating the integral, we get 

(o,,(z, t) = 41tR 3 ( N  0 Jr- O (~R)N l ( t )Re[exp(-  i~z)]). [3.15] 

From this relation we arrive at the following conclusions: 

(1) If for a monochromatic disturbance of wave number e, O ( e R )  = 0, then it is 
obvious from [3.15] that ¢h,(z, t) = 47cR3No = constant. Therefore, for the blocked 
wave numbers the area fraction is constant in space, even though the number 
density distribution oscillates in space. This raises the following very important 
question--what effect do these blocked wave numbers have on the number 
density distribution, and on the overall dynamical behavior of the system? 

(2) The fact that O (eR) is a rapidly decaying function of eR (see figure 4) implies that 
large wave numbers in the area fraction spectrum are strongly damped. Therefore, 
if the average drag acting on the particles depends on the area fraction, then the 
role played by large wave numbers in the dynamical response is greatly reduced. 

(3) Lastly, we note from figure 4 that O(~R)  is negative for certain eRs. This implies 
that for a monochromatic disturbance of wave number ~, with O (eR) negative, 
cb,, is smaller than 4 g g R N o  at places where N is larger than No, and vice versa. 
Furthermore, if the drag acting on a particle depends on the area fraction, then 
the magnitude of the drag is larger than the average drag, at places where 
N < No, and vice versa. This result is counter intuitive, but can be easily 
understood if we note that the wavelengths for which O(~R )  is negative are 
smaller than D. 
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We show next that the area fraction flux q(z, t), passing through the plane z at time t, is also 
blocked. In order  to obtain an expression for the area fraction flux, we note that  the net area fraction 
flux contr ibution f rom the particles that  are between x and x + d x  is N(x  + z , t ) u ( x  + 
z, t)r t(R 2 -  x 2) dx. Therefore,  the total flux can be obtained by integrating from - R  to R, 

q(z, t) = N(x  + z, t )u(x + z, t)~z (R 2 - x-') dx. [3.16] 
R 

Since the convolut ion  in the above relation is same as in [3.6], it is easy to show that  the spatial 
distr ibution of  the flux is also blocked, i.e. 

q(e,  t) = 4~zR30(~tR)(Nu)(~t, t) 
3 

where (Nu)(ct, t) is the Fourier  t rans form of  the produc t  N(z, t) u(z, t), and q(e, t) is the Fourier  
t ransform of  q(z, t). 

For  a m o n o c h r o m a t i c  periodic dis turbance of  wave number  c( an alternative relation between 
the area fract ion flux and Nu  can be obta ined by assuming: 

(Nu)(t,  z)  = (Nu)o + (Nu)l (t)Re[exp(-ictz)]. 

After substi tut ing the above expression for Nu  in [3.16] and evaluat ing the integral, we get 

q(z, t) = qo + 37zR30 (otR) (Nu), (t)Re[exp( - ic~z)] [3.17] 

where q0 = 4gR3(Nu)o is the average value of  the area fract ion flux. The  above relations allow us 
to conclude: 

(1) For  a monoch roma t i c  number  density flux dis turbance of  wave number  c~, with 
O(eR)  = 0, the spatial distr ibution of  the area fract ion flux is constant ,  even 
though the number  density flux oscillates in space. Therefore ,  for blocked wave 
numbers  there is a net t ranspor t  o f  the number  density, but  there is no net 
t ranspor t  o f  area fraction. 

(2) Fo r  a monoch roma t i c  dis turbance of  wave number  ~, with O(eR)  negative, 
q(z, t) is smaller than the average value of  q0 at places where Nu is larger than 
(Nu)o, and vice versa. 

4. S T A B I L I T Y  OF U N I F O R M  F L U I D I Z A T I O N  

In order  to s tudy the stability of  uni form fluidization, we linearize [3.9]-[3.11] a round  the solution 
(u, 4 ,  qS,,) = (0, 40, 40) and find that  the system of  per turbed equations,  denoted by the subscript  
I, is 

a41 4 au.  
a--)- + 0 az = 0, [4.1] 

3 f  R 
= 41 (z + x, t ) (R  2 -- x 2) dx, [4.21 

where 
4.84 

6 = - -  E ~ - " ,  [ 4 . 4 ]  
nU(O) 

/; = 4.8 4. [4.5] 

After  el iminating (, and u, f rom [4.1]-[4.3], we find a single second order  equat ion 

a21~)l - -  ~ 0 4 1  - -  /~1~ 0 3 a f R  = at ~ 5  ~-Tz 41(z +x ,  t ) ( R 2 - x 2 ) d x .  [4.6] 
R 

a u  1 
- -  a u l  - b ~ l ,  [4.3] 

at 
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The stability of uniform fluidization may 

dPl = ~ l  e',l ei:':. 

We obtain a complex dispersion relation of the form 

a 2 + aft + icd~q~oO(~R ) = O, 

where O(aR)  is given by [3.14]. 
We may solve this quadratic equation 

where 

be determined by analysis of [4.6] using normal modes 

[4.7] 

[4.8] 

We wish to draw the readers attention to the importance of the blockage function O (~R) because 
when it is zero the growth rate Re(a) is also zero. We have already listed the zeros of O(c~R), i.e. 

= 4.493/R, 7.7253/R, 10.904/R . . . .  Also note that the blockage function approaches zero for 
large values of  ~ like 1/~ 2, and therefore the growth rate approaches zero also for large wave 
numbers. These results for the growth rate are not unique to the nonlinear drag law used in this 
study. In fact, any drag law based on the area fraction which reduces to [4.3] gives rise to the same 
results. Therefore, the zeros of the dispersion relation cannot be used to check the validity of the 
drag law. However, the form of the dispersion relation for the area fraction based drag laws is 
markedly different from that for the number density based drag law because in the former case 
there is a set of neutrally stable modes which shall be shown to have significantly less power in the 
saturated state. These features of the area fraction based model are also seen in the experimental data. 

We next consider the nature of the instability of the uniform state for two different limits of  short 
waves (7 ~ ~) .  In the first limit we have ~R ~ 0  as c~ ~ ~ .  This corresponds to the classical case in 
which finite size effects are neglected which can be recovered from our theory when 

~ O ( ~ R ) ~ .  

It then follows from [4.9] and [4.10] that the growth rate 

r e a ~  bx/~0x/~ 

is unbounded for short waves of wavelength 2~/~, ~ ~ ~ .  In this case the uniform state of fluidization 
is Hadamard unstable. 

On the other hand, if a R ~  as ~ ,  then a O ( ~ R ) ~ 0  and a ~ 0 ,  and the uniform state is 
unstable, but not Hadamard unstable. We say that finite size effects regularize the Hadamard 
instability. Furthermore, when R > 0 is fixed then at each and every zero of otO(~R) we have 

a = 0  or - 6 ,  

otherwise 

R e a  >0 .  

The graph of re a(2~R) is shown in figure 5. From this graph we conclude that for R > 0, however 
small, uniform fluidization is unstable, but not Hadamard unstable, i.e. the finite size of particles is 
a regularizer. We also note that there is a blockage of waves of wavelength 2zt/a for a = 0, 4.493/R, 
etc. which are neutrally stable and also do not propagate. 

Finally, we note that the growth rate is maximum for a ,-, 2.6/R. By putting this value in [4.10], 
and using [4.4] and [4.5], we get 

q)o [4.1 I] E = Y.,,, = 2.17n2u~ (1 -- ~b)D~ " 

In section 5 we shall see that Z .... which for the linearized theory determines the maximum value of 
the growth rate, determines the amplitude of the fluctuations for the solution of the nonlinear 

4M~O0 O (~R) 
Z = &2 [4.10] 

f o r  

6 
x/ l  - iY~ [4.9] 

a = - 5 + g  
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Figure 5. Re or(coD) is plotted as a function of c~D. 

equat ions .  The  physical  significance o f  Y,,, is that  it is a ra t io  o f  the grav i ta t iona l  and  m o m e n t u m  
terms.  

5. E X P E R I M E N T S  

In this sect ion we briefly describe our  exper imenta l  results for the area  f ract ion in a two-dimen-  
sional  bed ob ta ined  using the Spin Physics M o t i o n  Analys is  System ( S P M A S )  (see Singh (1991) 
for  details).  The  average area  f rac t ion ~b,(t, z)  is the fract ion of  hor izon ta l  p lane  z covered by the 
part icles  at  t ime t. We  ob ta ined  ~b,(t, z) at  a discrete set of  poin ts  at  cons tan t  intervals  o f  z and  
t. The da t a  ob ta ined  were s tored in a two-d imens iona l  a r ray  

(a~,(i,j) i =  1 . . . . .  N, j = l  . . . . .  M, 

where ck,(i,j) = q6,,(ti, zj), ti = i ts ,  zj =jZ~, T s is the sampl ing  t ime and Z s is the sampl ing  distance.  
The sample  mean,  4J,, = 1 /NM ~'iJ (a,,(i,j), was removed  from qS,(i,j). The new zero-mean a r ray  thus 
ob ta ined  is for convenience again deno ted  by qS,,(i,j). F o r  S P M A S ,  M = 239 but  N is essential ly 
unl imited.  

F o r  spherical  par t ic les  listed in table 1 and fluidized in water,  we have ob ta ined  the da t a  arrays ,  
q~,,(i,j). The  average solids f ract ion was held app rox ima te ly  cons tan t  a r o u n d  0.25 for three cases 
listed in table  1. The Reynolds  number  was changed by changing  the densi ty  of  the fluidized 
part icles.  The goal  was to analyze the two-d imens iona l  a r ray  qS,(i,j) for the presence and proper t ies  
o f  any spat ia l  or  t empora l  s tructure,  t ravel ing waves or  any o ther  dist inct  s tat is t ical  s tructure,  and 
to s tudy how the s tructures  change with Reynolds  number .  

The t empora l  au tocor re l a t ion  for a con t inuous  t ime ergodic  process  4L,(t, z) is given by 

r,(z ,z)  = lim 1 .f0 T T ~ - T  4L'(t + z ' z ) ~ " ( t ' z ) d t  [5.1] 

where r is the t ime shift. The tempora l  au tocor re l a t ion  funct ion in the discrete case is given by 

1 N n 

49,,(i,.j)gp,,(i + n, j)  [5.2] r ~ ( n ) = N - n  i=L 

Table 1. Diameter, density and Reynolds number for four 
cases. The Reynolds number is Re = u, D/v where v is the 
kinematic viscosity of water and u, = Q/A is the superficial 
velocity, Q is the volume flow rate and A is the area of cross 

section 

Particles D (cm) Density (g/cm 3) Re ~ 

Plastic 0.63 1.I2 300 0.24 
Glass 0.60 2.46 1650 0.23 
Aluminium 0.63 2.70 2000 0.14 
Rubber 0.68 4.22 2750 0.22 
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Figure 6. The temporal autocorrelation function as a function of the temporal shift. The temporal 
sampling time is 0.1 s. The plastic spheres which are fluidized at the smallest Reynolds number (see table 
1) have the longest memory. Higher Reynolds numbers are associated with faster decay of the 

autocorrelation function. 
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Figure 7. The spatial autocorrelation function as a function of the spatial shift. The sampling distance 
Z~ = 0.075 cm. The variance r__(0) is a monotonic function of the Reynolds number (see table 1). r :(m) 
is minimum for a spatial shift of 0.84 D in dimensional terms. The recovery of r_.(m) to zero is faster when 

Re is small. 
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Figure 8. The autoregressive power spectrum as a function of temporal frequency (rad/s). The power 
spectrum is flatter at higher Re. Flatter spectrum means shorter memory, The apparent fluctuations are 

due to noise. 

where the time shift r is related to n and the sampling time T~ by r = nT~. Similarly, we may 
compute the spatial autocorrelation function from 

r__(t, ~)=  lira 1 .[L L ~ L  49,(t,z +~)qS,(t,z)dz, [5.3] 

where ~ is the spatial shift. However, in a practical problem, the spatial length L over which the 
samples are available is usually too small to give an accurate estimate of the spatial correlation. 
This problem is easily resolved for a stationary ergodic process with finite temporal memory by 
averaging over the samples that are obtained after a long enough interval of time. Thus, for an 
ergodic process the resulting estimate is given by: 

r.(~) = ~7 , = 1  , qS,,(t/, z + ~)~b,,(t/, z) dz [5.4 1 

-1 ~ ~ Blocked values 
from theory 

O'---- Plastic, Re = 300 
• Glass, Re = 1650 

~. Aluminium, Re = 2000 
-2 

O Rubber, Re = 2750 

o 

-3 

-4 
10 20 

o~D 

Figure 9. The autoregressive power spectrum for the spatial autocorrelation function [5.5] as a function 
of nondimensional wave number. The value of ~D at the first maximum decreases with increasing Re. 
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Figure 10. Normalized temporal  autocorrelat ion for the discrete equivalent of  the time derivative of  the 
solids fraction. Such changes are uncorrelated for r andom processes. This figure shows that increases in 

~b are followed on average by decreases; they are negatively correlated. 

where i runs over a set of  statistically independent samples of  if,,. It is straightforward to show 
that for the discrete case the spatial autocorrelation function is then given by 

r:(m)=N. N' ~ ~.(i,j)~.(i,j+m) 
~-i M -  m )=l 

[5.51 

where i runs over a set of  statistically independent spatial distributions, and the spatial shift ( is 
related to m and the sampling time Zs by, ( = mZ,. 
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Figure I I. Isovalues of  two-dimensional  power  spectrums are shown as a function of  the nondimensional  
wave number  and temporal  frequency: (a) plastic, (b) glass, (c) aluminium, (d) rubber  (see table l). 

~1 47.12 
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The additional analysis of the data is done in terms of the autoregressive power spectrums. For 
both the spatial and temporal autocorrelations, we have computed the spectrums by using the 
Levinson-Durbin recursion [see Roberts & Mullis (1987)]. 

In figures 6-11 we have presented the results of  our data analysis for the area fraction distribution 
in space and time. Before moving on to a detailed analysis of  these figures, we note from figure 6 
that for each z the temporal autocorrelation decays monotonically with the temporal shift to zero 
at an effectively finite time r~. Since both the autocorrelation and r~ are independent of  z [see Singh 
(1991) for a detailed discussion], the fluidized suspension is spatially homogeneous. The power 
spectrum plots for the temporal autocorrelation functions shown in figure 8 are broad banded; 
they do not have a dominant frequency. The discretized spatial autocorrelation r:(~) shown in 
figure 8 also goes to zero within a finite spatial shift. Therefore, there is no long range correlation 
in the bed. The power spectrum of the spatial autocorrelation functions shown in figure 9 are also 
broad banded, but they contain valleys of significantly smaller power. We note that the location 
of these valleys is the same as of the zeros of the blockage function [3.14], Therefore, the 
experimental technique we are using is accurate enough to detect the spectral contents at 
wavelengths smaller than the diameter. 

At this point we briefly note that the results of  diffraction studies show that the set of 
dimensionless minima of the number density spectrum for a fluidized suspension is the same as the 
net of zeros of the blockage function (see Pusey, Wai, Wignall et  al. and Ottewill). In these studies, 
since the scattering techniques are used to detect the spatial structures, the wavelength of the 
radiation used is comparable to the diameter of the fluidized particles. For example, in Pusey's light 
scattering study the particle diameter is 0.09 jam, and in Wignall et al. the neutron scattering study 
the particle diameter is 0. I jam. One advantage of using the diffraction techniques is that the number 
density spectrum can be obtained directly by using composite particles with core-shell morphology, 
e.g. when the diffraction diameter of  the particles is sufficiently smaller than the mechanical 
diameter (see Wai, Wignall et al. and Ottewill for details). We also note that even though the 
diameter of the particles used for the neutron and light scattering studies is much smaller than for 
our study, the set of  the dimensionless blocked wave numbers is the same. This result is a 
consequence of the fact that the only length scale in a fluidized suspension is the particle diameter. 
Therefore, the results obtained by diffraction studies for very small particles can be compared with 
our results for much larger particles listed in table 1. 

Now we return to a detailed study of the temporal correlation. First, we study the changes in 
the temporal correlation as the fluidization parameters are varied. From figure 6 we note that the 
correlation time r,,, i.e. the time that the temporal autocorrelation function takes to become zero, 
decreases with increasing Reynolds number. Since r,, is a measure of the memory of the system, 
we may conclude that the temporal memory is finite and that it decreases with increasing Reynolds 
number. However, since the shape of the temporal autocorrelation function remains the same, an 
observer sitting at a fixed point sees only time scale changes with increasing Re. 

The degree of nonuniformity in a fluidized suspension can be quantified by the variance of any 
suitable variable, such as the number density, area fi'action, particle velocity, acceleration, etc. Here 
we will use the normalized variance of ~b,,, ~ / ' ~ b  0, as a measure of the magnitude of the 
fluctuations; when its value is much smaller than one the amplitude of the area fraction fluctuations 
is much smaller than the average area fraction. On the other hand, when its value is of order one 
the amplitude of the area fraction fluctuations is comparable to the average value of the area 
fraction. Obviously, when v/r,(0)/q~0 is much smaller than one, since the fluctuations of the area 
fraction (from the average value) are small compared to the average value, the spatial distribution 
of the particles would appear uniform. On the other hand, when ,~ l/~5"~(0)/~b~ is of order one, since 
the amplitude of the area fraction fluctuations is comparable to the average value of the area 
fraction, the spatial distribution would not appear uniform. From figure 6 we note that since r,(0) 
increases with increasing Re, the amplitude of the fluctuations grows with increasing Re. Therefore, 
we conclude that the spatial distribution of particles becomes less uniform with increasing Reynolds 
number. Furthermore, note the autocorrelation and the variance are unique for a given state of 
fluidized suspension, i.e. the form and shape of the correlations is fixed. In the real space, this is 
equivalent to saying that the magnitude and the form of the fluctuations are unique to the state 
of  fluidization. 
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In order to study the statistical behavior of  the changes, we define the following differential 
process 

(9,,(i + i , j )  -- e~,,(i,j) 
qS',,(i,j) = [5.6] 

q~0 
Its autocorrelation function 

1 N n 

r;(n)-- ~ O',(i,j)dp[,(i+n,j), j f ixed,  [5.7] 
N - n  i=l 

is obtained in a similar manner,  and is shown in figure 10. From this figure, we note that r;(n) 
is independent of  j, is negative, and increases monotonically until it becomes zero. As we have 
already noted in the study of the temporal spectrums, since r~(n) goes to zero faster at larger Res, 
the memory is shorter at larger Res. Also note that r~(n) increases in magnitude with increasing 
Re. Therefore, the magnitude of the fluctuations r,(0) is larger at larger Res, and since the 
correlation is negative, the mechanism which counters the fluctuations of  the area fraction is 
stronger at larger Res. Furthermore, since the correlation is nonzero, the fluctuations are not 
completely random. But, of  course, the process has a short temporal memory.  

We turn next to a detailed study of the nature of  the time averaged spatial autocorrelation (figure 
7). For all cases considered the spatial autocorrelation function decreases rapidly and becomes 
negative. After reaching its maximum negative value it increases and approaches zero uniformly. 
It is zero for large spatial shifts. The length of  the negative spatial memory increases with Reynolds 
number. This is probably due to the wakes getting bigger with increasing Re. The spatial shift at 
which the spatial autocorrelation function becomes zero gives us the length scale over which the 
particle positions are correlated. Therefore, in a fluidized suspension the nearby spheres arrange 
themselves in a somewhat organized way, but there is no such organization over large distances. 
Also note that both the length scale of  the organized structures and the variance r:(m) increases 
with increasing Re. Also, since the power spectrum of the temporal autocorrelation is broad 
banded, the fluctuations of  the voidage from the average value are not periodic in time. If  we 
assume that these fluctuations in the voidage are due to propagating waves then we can safely say 
that there are no dominant wave numbers. 

The spatial spectrum shown in figure 9 is essentially a one-dimensional object, and thus cannot 
be used to analyze the propagation of structures. To study propagation we use the periodogram 
method to obtain the two-dimensional power spectrum of qS,(i,j) 

F(09 ,~)=  2 ~b.(i,k)exp - j - ~ - ) e x p - j - ~ - )  [5.8] 
i = 0  k = 0  

where j = ~ -  1, 09 is the temporal frequency and c¢ is the wave number. Again, since M is only 
239, the large variance (or the error) of  the above estimate is reduced by averaging over several 
such statistically independent estimates. The two-dimensional power spectrum F(09, c¢) gives a 
mathematical  description of the dispersive properties of  the large structures found in the bed. From 
figure 1 1 we note that F(09, u) is a decreasing function of 09 and contains valleys with relatively 
less power for the blocked wave numbers. In fact, the valleys in the two-dimensional spectrums 
are so overwhelming that it is difficult to easily visualize any other feature. A detailed study of the 
spectrum, however, reveals that the blockage exists even in the following one-dimensional 
distribution: co,.(~) where ~o,, is the frequency for which F(09, ~) is maximum for a fixed value of 

; thus 

F(09m, ~) = max F(09, ~), [5.9] 
09 

as can be seen in figure 12 where it is plotted as a function of ~D. We note from this plot that 
for the blocked values of  c~D the signal peaks at 09 = 0, and that for the unblocked ~Ds it peaks 
at 09 :~ 0. This shows that the propagation velocity of  the waves is also related to the blockage 
function. In particular, the propagation velocity is zero for the blocked wave numbers and it is 
nonzero for the unblocked wave numbers. This dynamical feature is consistent with the linearized 
zeroth order theory (see section 4) where we have shown that the waves which correspond to the 
blocked wave numbers have zero propagation velocity. 

IJMF 2I I - -B 
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Figure 12. The temporal frequency of the highest power max,° [F(oJ, ~)l giving rise to ~o,,(~D) as a function 
of ~D. The highest power is small at the blocked values of ~D and og,,,(o~D) ~ 0 there. 

6. N O N L I N E A R  A N A L Y S I S  

In this section we present numerical solutions o f  [3.9]-[3.11] obtained by integrating in time for 
different initial conditions. The Fourier-col locat ion method is used to spatially discretize the 
equations. The method  assumes that  u and N are periodic in space. All results presented in this 
paper  were obtained by solving the equations in a domain,  0 ~< z ~< 80 D. For  the Fourier  
collocation method u and N are given by 

l - I  

u(zj, t )= y~ ~,(t)e 'k-, 
k =  l 

l 1 

N ( z j ,  t ) =  ~ 2Vk(t)e i% 
k =  l 

f o r j  = 0 ,  1,2 . . . . .  2l - 1, [6.1] 

where 2l is the number  o f  collocation points. All results presented in this study are for 2l = 512 
or 1024, and have been verified for convergence with increasing I. The collocation points are 
uniformly distributed within the computa t ional  domain.  We use a staggered grid for the velocity 
u and the number  density N. The velocities u(zj ,  t)s are defined as zj = O, n / l  . . . . .  (2l - l )n / l ,  and 
the number  densities N ( z j ,  t)s are defined at zj = n /2 l ,  3n /2 l  . . . . .  (4l - I )n/2l .  A set o f  nonlinear 
ordinary differential equations (ODEs)  for u(x j ,  t)  and N ( x j ,  t)  is obtained by substituting the 
above representations for u and N in [3.9]-[3.11]. These nonlinear O D E s  are then discretized using 
the fifth order  implicit A d a m - M o u l t o n  method.  The system of  nonlinear equations thus obtained 
is solved by using the N e w t o n - R a p h s o n  method.  

In the next few paragraphs  we discuss some of  the properties o f  our  numerical method.  We begin 
by showing that  the use o f  exponentials as interpolation functions allows us to obtain the integral 
term in [3.10] exactly, i.e. 

4),,(zj, t)  = i -- ~ = N ( z  + ~, t )~(R 2 -- ~2) d~ 
- R  

] = 19~.(t)e'A~+-,l~(R2 -- 42) d~ 
--R k= - /  

] = ~ ~[k(t)¢ kz' e ik~n(R2-~2)d~ 
k = - - /  R 
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/ I 

= Z N~-(t)e~k:'4rtR30(kR) 
k -  I 

I - I  

_ 47z R 3 - 3  ~" [O(kR)N~.(t)]e ~kzj, [6.2] 
k =  / 

where 6)(kR)  = 3[sin k R / ( k R )  3 -  cos kR/(kR)2]. We note that the sequence {q~,,(z/, t), 
= - / ,  . . . .  l - 1} is simply a discrete Fourier transform of  the sequence {69(kR))Nk(t)},  and thus 
the last term in [6.2] can be evaluated by using the Fast Fourier Transform (FFT). We have already 
noted the properties of  the blockage function O(kR) ,  and its effect on the spectrum of the area 
fraction. In particular, it completely removes the blocked wave numbers from the area fraction, 
and it significantly diminishes the effect of  the wave numbers for which 6?(kR) is small. Therefore, 
the dynamical significance of all these wave numbers is significantly reduced because the average 
force acting on a particle is assumed to depend on ¢, .  

In order to obtain a numerical scheme which is stable over a long period of time it is necessary 
that the numerical scheme used conserves IN[ 2. When global interpolation functions are used to 
evaluate the derivatives, one of  the effects of  truncation, i.e. finite /, is the generation of high 
frequency components (see Canuto et al. 1988). Many alternatives are available to overcome this 
problem. One can apply a low pass filter, do derivative filtering using many different types of  filters 
available and/or add some artificial diffusion to stabilize the numerical scheme. But all these 
methods suffer from the fact that they modify the equation conserving N in a non-physical way. 
The method we use in this paper exploits the fact that the grids for N and u are staggered to obtain 
the correct flux balance. This ensures the stability of  the numerical method when integration is 
carried for a long period of time. 

One clear advantage any numerical simulation of the fluid flow has over an actual fluid flow 
experiment is that numerically one can obtain the Lagrangian quantities with relative ease. In fact, 
in an experiment it is often impossible to obtain the Lagrangian quantities. The Lagrangian 
quantities are important  for practical reasons because the rates of diffusion and mixing can be 
estimated from the trajectories of  the particles. Thus, for a test particle we will obtain the position, 
velocity and acceleration as a function of  time. 

When we integrate [3.9]-[3.11] numerically, we find that the numerical solution changes 
continuously with time and does not reach any fixed shape or form. One way to overcome this 
problem is to study it as an initial value problem: i.e. we numerically integrate the system of 
equations for various initial conditions and parameter  values until the power contained in the 
fluctuations reaches a constant level. We find that the constant power level reached depends on 
the model parameters, but it is independent of  the initial conditions. After the solution has reached 
the state of  constant power level, it fluctuates only slightly from the constant value. We call such 
solutions bounded. By the word "bounded"  we mean that the solution is time dependent, but has 
power level bounded from both above and below. 

In order to follow the progress of  our numerical solution, we monitor the power contained in 
the velocity fluctuations: 

1 l i 
lu(t)12 = ~ k  ~ ~ / [fi~12' [6.3] 

and the number density fluctuations: 

1 l 1 A 

IN(t)l 2 = ~ k ~  [Nkl 2 [6.4] 

as a function of time. Note that IN(t)l 2 and lu(t)l 2 are also the variances of  the number density 
and the velocity distributions, respectively. Using our numerical results we would show that the 
power contained in the velocity and number density fluctuations increases or decreases with time, 
depending on the relative magnitude of its initial value to that of  the bounded state for the chosen 
parameter  values. Therefore, even though the power contained or the form of the power spectrum 
of the bounded solution are not known a priori, it is possible to identify the bounded state by 
monitoring the power contained in the velocity and number density fluctuations. 

In order to show that the constant power level of  the bounded solution is independent of  the initial 
conditions, in figure 13 we have plotted the power contained in the area fraction and velocity 
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f u n c t i o n  o f  t i m e  fo r  t w o  d i f f e r e n t  in i t ia l  c o n d i t i o n s .  

fluctuations for two different initial conditions, as a function of time. For the first case, the initial 
power is smaller than that for the bounded state, and for the second case the initial power is larger 
than that for the bounded state. For both cases the initial spatial distribution for N and u fields 
is assumed to be random. As expected, for the first case the power contained in the fluctuations 
grows with time until the nonlinear terms become comparable to the linear terms because the 
nonlinear terms in this problem are such that the growth of the fluctuations is stopped. The power 
contained in the fluctuations stops growing when it reaches the level equal to that of  the bounded 
state, and this level is then approximately maintained. On the other hand, in the second case the 
fluctuations lose power with time until the power is down to the same approximate level as in the 
first case, and again this level is then approximately maintained. For these two different initial 
conditions, the power spectrums of the converged bounded solutions, for both the number density 
and velocity fields, are indistinguishable. 

Next, we study the dependence of the bounded solutions on the model parameters. From table 2 
we note that for fixed n and q~0, the power contained in the fluctuations increases with increasing 
E,,. But, for a given n and q~0, there is a maximum value of Z,, for which a bounded solution exists. 
When Em is larger than this maximum value the magnitude of the fluctuations of N(z, t) becomes 
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comparable to the average of N. This results in the failure of the numerical scheme because there 
are regions in the domain where N(z,  t) is zero (or even negative for numerical simulations). For 
example, for n = 4.8 and 4~0 = 0.3, the largest value of E,,, for which a bounded solution exists is 
0.93. From the Richardson-Zaki  correlation we know that n = 4.8 corresponds to small Reynolds 
numbers. We have picked this particular value of n for our numerical study because the 
experimental data available for three-dimensional beds; the data by Pusey, Wai, Wignell et al. and 
Ottewill, is for this regime of Reynolds numbers. However, as we have noted earlier, since the 
experimental data for two- and three-dimensional beds is qualitatively similar, our numerical results 
can be compared qualitatively with the data presented in section 5 for the two-dimensional 
bed. But, we must remember that the theory is for unbounded three-dimensional fluidized 
suspensions. 

Although, the bounded solutions have nearly constant power their time evolution as well as their 
spatial distribution is complicated. Therefore, only the statistical nature of  these bounded solutions, 
in terms of the temporal and spatial power spectrums, is described here. Both spectrums, i.e. the 
temporal evolution at a fixed point and the spatial distribution for a fixed time, are broad banded 
[see figures 14(a) (b)]. From figure 14(a) we note that the spatial power spectrum of the number 
density contains relatively small power for the blocked wave numbers. This is in general agreement 
with the experimental results we have presented in section 5, and also with the experimental results 
of  Pusey, Wai, Wignall et al. and Ottewill discussed earlier in this paper. 

The Lagrangian acceleration for a typical particle and its spectrum are shown in figure 15. Since 
the spectrum is broad banded, the motion of an individual particle is also a complicated function 
of time. This agrees well with the observation of VMZ that the particles move on quasi-random 
paths. 

We have noted earlier that for both experiments and numerical simulations, the power con- 
tained in the fluctuations and also the amplitude of the fluctuations, depend on the flow par- 
ameters. From a practical point of  view, we want the power contained in the fluctuations to be 
as small as possible because then the heat and mass transfer rates between the fluid and the par- 
ticles are maximum. In a real fluidized suspension, the judgement whether or not the fluctuations 
are sufficiently small is usually arrived at by looking at the spatial uniformity of  the particles 
and their motion. Therefore, it is important  to compare the statistical nature of  the fluctuations 
for a real fluidized suspension with that for the model. We have already seen that the forms 
of spatial and temporal power spectrums are simlar for the suspensions and the model. Now 
we note that for both the suspensions and the model, it is possible to control the amplitude 
of the fluctuations by controlling the parameters. In particular, when 2m is smaller than one, 
the area fraction fluctuations are small compared to its average value. In experiments, the 
magnitude of the fluctuations increases with increasing flow rate which in turn is proportional 
to Y~m (or Re, see section 5). Therefore, when Z,, is small, the spatial distribution appears uni- 
form because the uniform state dominates, see figure 16. On the other hand, when 52 is of  
order one but smaller than one, the area fraction fluctuations are comparable to the average 
area fraction in the bed. In this case the spatial distribution does not appear uniform. Further- 
more, when E,, is larger than one, then the fluctuations are large enough to produce regions in 
the domain where the area fraction is very small (or even negative for numerical simulations). 
However, the numerical method failed in this regime. Therefore, we may conclude that as the 
parameter  Y.,, is increased, the spatial distribution of the particles becomes less uniform as the 
magnitude of the fluctuations increases (see table 2). This allows us to propose the criterion that 
when 

Y,,, < 1 [6.5] 

then the spatial distribution of the particles is sufficiently uniform. That  is, there are no regions 
in the domain where the number density N is too small or too large. 

It is interesting to compare the above criterion with the criteria of  Batchelor, and Foscolo & 
Gibilaro for predicting the stability of the fluidized suspensions. We note that their criteria are 
based on linear stability analysis. Here we will compare our criterion only with the Foscolo & 
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a function of z. Since @,, P max(4 - epo), the spatial distribution appears uniform. 

Gibilaro theory because some of the parameters in Batchelor’s theory are not known. In our 
notation the Foscolo-Gibilaro stability criterion states that a fluidized suspension is unstable if 

2.6 AL- 
j 

JLzC#+(l - $)“+I < 1.0 
PI,-P&$ 

WI 

They have used this criterion with some success to predict the onset of bubbling (i.e. a form of 
instability where the fluctuations from the uniform state are so large that holes, with no particles, 
appear in the bed). The left-hand side of the above inequality is closely related to C,,; thus it is 
possible to write their criterion in terms of C,, as 

Jz, < 1.73. 16.71 

Therefore, the Foscolo-Gibilaro criterion predicts instability when & is larger than 1.73. This 
agrees well with criterion [6.5] for the nonlinear zeroth order theory. The similarity between the 
two criteria is apparent, but the two theories are completely different from a mathematical point 
of view. Specifically, the nonlinear solution predicts instability when the spatial distribution of the 
particles becomes so uneven that holes with no particles appear in the domain (as is also the case 
in experiments). On the other hand, the Foscolo-Gibilaro criterion is derived from a linear theory 
which predicts instability when the kinematic wave speed becomes larger than the dynamic wave 

speed. 

7. CONCLUSIONS 

The linear stability analysis of the zeroth order theory shows that uniform fluidization is unstable 
even when the force acting on a particle is assumed to depend on the area fraction. However, it 
is not Hadamard unstable, and there is a discrete set of blocked wave numbers for which the growth 
rate is zero. The numerical simulation of the nonlinear zeroth order theory shows that there are 

Table 2. For q$ = 0.3 and II = 4.8 the power contained in 
the fluctuations of the area fraction and the velocity, and the 
maximum area fraction fluctuation are shown for the 
bounded solutions obtained for five different values of X,,, 

E”, 4 nId\ 

$0 
MI’ /ulZ 

0.748 0.860 0.0116 3.3 x 10 ? 
0.337 0.597 0.0056 8.0 x IO-4 
0.0958 0.261 0.00062 2.3 x IO -I 
0.0374 0.1 I9 0.000096 1.38 x 10-h 
0.0094 0.03 I 0.000010 1.46 x IO-” 
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time dependent bounded solutions with nearly constant power when 5 :  < 1. These results are 
consistent with experimental results for two- and three-dimensional beds where one finds that there 
are always some fluctuations in the area fraction and number density distributions, and that the 
amplitude of the fluctuations increases with increasing flow rate (or E,,). In fact, it is possible to 
measure the magnitude, as well as the statistical nature of the fluctuations, as a function the 
parameters. The statistical nature of the fluctuations is described in terms of  the temporal and 
spatial correlations, and their spectra. The spatial spectrum contains all wavelengths, including 
wavelengths that are an order of magnitude smaller than the particle diameter. In fact, the 
maximum of the power spectrum is at a wavelength that is comparable to the particle diameter, 
and wavelengths smaller than the diameter contain a significant portion of the total energy 
contained in the fluctuations. Therefore, any theory that attempts to describe the nature of 
fluctuations, must not only allow for wavelengths smaller than the diameter, but also predict their 
dynamical behavior correctly. This is, at least partially, accomplished in the present zeroth order 
theory because it allows all wavelengths to grow, and also correctly predicts the qualitative form 
of the spatial power spectrum, including blockage. 

We also wish to note that there is no evidence of  stable uniform fluidization, neither in the 
two-dimensional fluidized suspensions reported by VMZ and here, or in three-dimensional fluidized 
suspensions of Pusey, Wai, Wignall et al. and Ottewill. Nor  is there any indication of Hadamard 
instability. 

We conclude by making the following additional observations: 

• For a monodisperse suspension of spherical particles, if the number density is in 
the Fourier transform class, then the geometric relation [3.6] can be used to show 
that the Fourier transform of the area fraction contains blockage (see equation 
[3.13]). This equation also shows that if a particular wave number is missing in the 
number density spectrum, or contains very small power, then the same is true for 
the area fraction spectrum. The opposite is also true, except when the blockage 
function is small. 

• Both, the experimental data and the results obtained numerically for the zeroth 
order theory show that the fluctuations have a unique autocorrelation. The 
temporal autocorrelation is a monotonically decreasing function of the temporal 
shift, and the spatial correlation decreases to zero for a unique value of  the spatial 
shift which decreases with increasing Reynolds number. The variance (or the mag- 
nitude) of the fluctuations at a point increases with increasing Reynolds number. 

• The criterion Zm < 1 which we have found for numerical solutions with bounded 
power is similar to the Foscolo-Gibilaro criterion for bubbly beds which they have 
obtained by linear stability analysis of uniform fluidization. 
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